Antennas PHYS421 421 421

**ANTENNAS** 

## الفصل الثالث/ انظمة الهوائيات

Chapter Three/ Antenna Systems

Antennas PHYS421 421 421

## The Radar (radio detection and ranging) الرادار (3-3)

يعتبر الرادار من اهم انظمة الهوائيات ذات التطبيقات والاستخدامات الواسعة سواء كانت منها المدنية او العسكرية.

هناك مصطلحان شائعا الاستخدام مع القياسات الرادرية يمكن من خلالها تصنيف الرادار وهما:

1- Monostatic Radar (الرادار الاحادي): يعزى هذا المصطلح الى القياسات التي يكون فيها الرادار والهدف في نفس الزاوية (اي زاوية البث والاستلام واحدة) كما في الشكل (3-5)

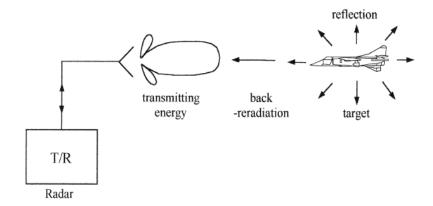



FIGURE 3.5 Radar and back-radiation: T=R is a transmitting and receiving module.

- 2 (الرادار الثنائي): يعزى هذا المصطلح الى القياسات التي يكون فيها مرسلة ومستلمة الرادار بزاوية مختلفة.

Antennas PHYS421 421

## RADAR EQUATION معادلة الرادار (3-3-1)

معادلة الرادار تعطي المدى بدلالة خصائص المرسل، المستقبل، الهوائي، الهدف، والبيئة. ولاستخراج القانون الاساسي للرادار (T) كما في الشكل (3-6)

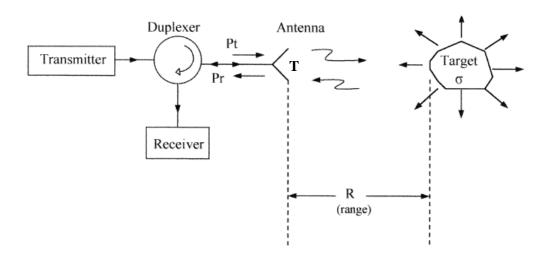



FIGURE 3.6 Basic radar system.

R فان كثافة القدرة  $P_d$  عند هدف معين يقع على مسافة  $P_t$  فان كثافة القدرة  $P_d$  عند هدف معين يقع على مسافة  $P_t$  هي:

$$P_d = \frac{P_t G_t}{4\pi R^2} \tag{3-14}$$

ان مقياس كمية الطاقة المعترضة والساقطة على الهدف واعادتها باتجاه الرادار تعرف بمساحة المقطع الراداري  $\sigma(m^2)$ 

 $\sigma$  = power backscattered to radar / power density at target

$$P_{
m d} = \frac{P_t G_t}{4\pi R^2} \sigma$$
 watt  $P_{
m d} = \frac{P_t G_t}{4\pi R^2} \sigma$  watt

كثافة القدرة المنعكسة بواسطة الهدف والعائدة الى الرادار هي:

$$\dot{P}_{d} = \frac{P_{t}G_{t}}{4\pi R^{2}} \frac{\sigma}{4\pi R^{2}} \text{ watt/m}^{2}$$
(3-16)

اذا كان تحصيل الهوائي المستلم 
$$G_r$$
 وكانت المساحة المؤثرة  $A_{er}$  المستلمة تساوي:  $A_{er}=\frac{G_r\lambda^2}{4\pi}$  المستلمة تساوي:

$$P_{r} = \frac{P_{t}G_{t}}{4\pi R^{2}} \frac{\sigma}{4\pi R^{2}} \frac{G_{r}\lambda^{2}}{4\pi}$$
(3-17)

Antennas PHYS421 421

العلاقة اعلاه تمثل القانون الاساسي للرادار لارسال واستقبال القدرة في حالة Bistatic radar . اما في حالة Monostatic radar فان  $G_t=G_r$  وعليه فان المعادلة الاخيرة تصبح

$$P_{\rm r} = \frac{P_{\rm t}G^2\sigma\,\lambda^2}{(4\pi)^3R^4}$$
 (3-18)

اذا كانت اقل اشارة قدرة متاحة هي  $S_{min}$ ، هذا يعني ان اعظم مدى متاح يكون عندما تكون الاشارة المستلمة هي  $P_r = S_{i,min}$  : لتكن  $P_r = S_{i,min}$  (هذا يعني اقل قدرة مستلمة تساوي اقل اشارة)

$$R = R_{\text{max}} = \left(\frac{P_{\text{t}}G^2\sigma\lambda_{\circ}^2}{(4\pi)^3S_{\text{imin}}}\right)^{1/4}$$
 (3-19)

وهذا شكل اخر لمعادلة الرادار. حيث ان:

where  $P_t$ = transmitting power (Watt)

G = antenna gain (linear ratio, unitless )

 $\sigma$  = radar cross section (m<sup>2</sup>)

 $\lambda$ = free-space wavelength (m)

 $S_{i,min}$ = minimum receiving signal(Watt)

 $R_{max}$ = maximum range (m)

اعظم مدى للرادار  $(R_{max})$ : هي ابعد مسافة والتي عندها تكون الاشارة المطلوبة صغيرة جدا نسبة لنظام العمل الرادارى .

S<sub>i,min</sub> : اصغر مستوى اشارة ادخال للرادار المستلم.

\* عامل الضوضاء لنظام الرادار يمكن تعريفه بالشكل التالي:

$$F = \frac{s_i/N_i}{s_i/N_i} \tag{3-20}$$

و  $N_i$  و أشارة ومستويات الضوضاء للادخال.  $S_i$ 

و  $N_0$  و اشارة ومستويات الضوضاء للاخراج.

$$: N_i = KTB$$

$$\therefore S_{i} = KTBF \frac{S_{\circ}}{N_{\circ}}$$
 (3-21)

 $1.38 \times 10^{-23} \text{J/K} = 1.38 \times 10^{-23} \text{J/K}$ : ثابت بولتزمان

T: درجة الحرارة المطلقة, K

 $H_z$ , عرض حزمة النظام :B

F: عامل الضوضاء, بدون وحدات.

(نسبة الاشارة المكتشفة الى الضوضاء) 
$$S^\circ/_{N_\circ}=\left(S^\circ/_{N_\circ}
ight)_{min}$$
 عندما  $S_i=S_{i,min}$ 

اذن اقل اشارة مستلمة تعطى بالعلاقة التالية:

$$S_{i,min} = KTBF\left(\frac{S_{\circ}}{N_{\circ}}\right)_{min}$$
 (3-22)

Antennas PHYS421 421

بتعويض المعادلة (22-2) في المعادلة (19-3) نحصل على :

$$R_{\text{max}} = \left(\frac{P_{\text{t}}G^2 \sigma \lambda_{\circ}^2}{(4\pi)^3 \text{KTBF}\left(\frac{S_{\circ}}{N_{\circ}}\right)_{\text{min}}}\right)^{1/4}$$
(3-23)

و هذا يعني ان المدى يعتمد على الجذر الرباعي للقدرة المرسلة.

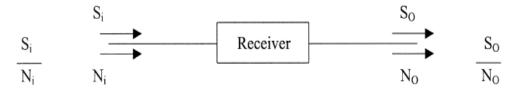



FIGURE 3.7 The SNR ratio of a receiver.

مثال / استخدم رادار نبضي بتردد  $35 \, \mathrm{GHz}$  للكشف وتعقب حطام بالفضاء بقطر  $1 \, \mathrm{cm}$  ( مساحة المقطع الراداري =  $2 \, \mathrm{cm}$  )، احسب اعظم مدى للرادار مستخدما المعلومات التالية:

$$P_{t}=2000 \text{ kW(peaks)} \qquad \qquad T=290 \text{ K} \\ G=66 \text{ dB} \qquad \qquad (S_{o}/N_{o})_{min}=10 \text{ dB} \\ B=250 \text{ MHz} \qquad \qquad F=5 \text{ dB}$$

**Solution**/ Substitute the following values into Eq. (3-23):

$$\begin{array}{lll} P_{t} \!\!= \! 2000 \; kW = 2 \; x \; 10^6 \; W & k = 1.38 \; x \; 10^{-23} \; J/K \\ G = 66 \; dB = 3.98 \; x \; 10^6 & T = 290 \; K \\ B = 250 \; MHz = 2.5 \; x \; 10^8 \; Hz & \sigma = 4.45 \; x \; 10^{-5} \; m^2 \\ F = 5 \; dB = 3.16 & \lambda_0 \!\!\!= \!\! C \, / f_0 \!\!\!= 0.00857 \; m \\ (S_o \!\!\!= \! N_o)_{min} \!\!\!= 10 \; dB = 10 & \lambda_0 \!\!\!= \!\! C \, / f_0 \!\!\!= 0.00857 \; m \end{array}$$

Hint:  $(66dB = 10^{66/10} = 3.98 \times 10^6)$ 

Then we have

$$R_{\text{max}} = \left(\frac{P_{\text{t}}G^2 \sigma \lambda_{\circ}^2}{(4\pi)^3 \text{KTBF} \left(\frac{S_{\circ}}{N_{\circ}}\right)_{\text{min}}}\right)^{1/4}$$

$$= \left(\frac{2 \times 10^{6} \text{ W} \times (3.98 \times 10^{6})^{2} \times 4.45 \times 10^{-5} \text{m}^{2} \times (0.00857 \text{ m})^{2}}{(4\pi)^{3} \times 1.38 \times 10^{-23} \frac{\text{J}}{\text{K}} \times 290 \text{ K} \times 2.5 \times 10^{8} / \text{sec} \times 3.16 \times 10}\right)^{1/4}$$

Antennas PHYS421 421 421

 $\frac{H.W}{H.W}$  احسب اقل قيمة للقدرة المرسلة لاشارة رادار لكي تكشف هدف مساحته  $10~m^2$  واقع على مسافة  $120 \, \mathrm{km}$  ،  $120 \, \mathrm{km}$  او  $120 \, \mathrm{km}$  وتحصيل الهوائي  $10 \, \mathrm{km}$  ، و قيمة عامل الضوضاء لنظام الرادار تساوي  $10 \, \mathrm{km}$